Center for Veterinary Biologics and

National Veterinary Services Laboratories Testing Protocol

Supplemental Assay Method for the Titration of Porcine Rotavirus Antibody

(Constant Virus-Varying Serum Method)

Date:		March 6, 2001 DraftApproved, pending Standard Requirement						
Supersede	s:	April 1, 1992						
Number:		MVSAM0122.01						
Standard	Requirement:	Draft						
Contact P	erson:	Peg A. Patterson, Patricia L. Foley,						
Approvals	:		Date:					
	Linn A. Wilbur, Head/Team Leader Mammalian Virology Section							
	Ann Wiegers, Ç	 Quality Assurance Ma	Date:					
	/s/ Randall Le Randall L. Lev Center for Vet	Date:3/23/01						
	United States Department of Agriculture Animal and Plant Health Inspection Service P. O. Box 844 Ames, IA 50010							

Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by USDA and does not imply its approval to the exclusion of other products that may be suitable.

CVB/NVSL MVSAM0122.01
Testing Protocol Page 2 of 13

Supplemental Assay Method for the Titration of Porcine Rotavirus Antibody (Constant Virus-Varying Serum Method)

Table of Contents

- 1. Introduction
 - 1.1 Background
 - 1.2 Keywords
- 2. Materials
 - 2.1 Equipment/instrumentation
 - 2.2 Reagents/supplies
- 3. Preparation for the test
 - 3.1 Personnel qualifications/training
 - 3.2 Preparation of equipment/instrumentation
 - 3.3 Preparation of reagents/control procedures
 - 3.4 Preparation of the sample
- 4. Performance of the test
- 5. Interpretation of the test results
- 6. Report of test results
- 7. References
- 8. Summary of revisions
- 9. Appendix

1. Introduction

1.1 Background

This Supplemental Assay Method (SAM) is an *in vitro* serum neutralization (SN) method which utilizes cytopathic effects (CPE) or an indirect fluorescent antibody (IFA) technique in a cell culture system for determining the SN antibody titer against Group A porcine rotavirus (PROTA). The SN assay uses a constant amount of virus to test varying dilutions of serum.

Note: For this SAM, the dilution terminology of 1:10, 1:20, etc., specifies 1 part plus 9 parts (liquid), 1 part plus 19 parts, etc.

1.2 Keywords

Porcine rotavirus, PROTA, CPE, IFA, SN, titer, in vitro

2. Materials

2.1 Equipment/instrumentation

- **2.1.1** Incubator, 1 36 0 ± 2 0 C, 5% ± 1% CO₂, high humidity
- 2.1.2 Water bath²
- 2.1.3 Microscope, inverted light
- 2.1.4 Microscope, 4 ultraviolet (UV) light
- 2.1.5 Vortex mixer⁵
- **2.1.6** Micropipetters: 200 μ l and 1000 μ l single channel; 300 μ l x 12 channel

 $^{^1}$ Model 3158, Forma Scientific, Inc., Box 649, Marietta, OH 45750-0649 or equivalent 2 Cat. No. 15-461-10, Fisher Scientific, Inc., 319 West Ontario, Chicago, IL 60610 or equivalent

 $^{^3}$ Model CK, Olympus America, Inc., 2 Corporate Center Dr., Melville, NY 11747-3157 or equivalent

Model BH2, Olympus America, Inc. or equivalent

 $^{^{\}text{5}}$ Vortex-2 Genie, Model G-560, Scientific Industries, Inc., 70 Orville Dr., Bohemia, NY 11716 or equivalent

⁶ Pipetman[®], Rainin Instrument Co., Mack Rd., Box 4026, Woburn, MA 01888 or equivalent ⁷ Finnpipettes[®], Cat. No. NX204662D, A. Daigger Co., Inc., 199 Carpenter Ave., Wheeling, IL 60090 or equivalent

2.2 Reagents/supplies

- 2.2.1 PROTA Reference Viruses8
 - 2.2.1.1 Serotype 4 (Gottfried strain)
 - 2.2.1.2 Serotype 5 (OSU strain)
- **2.2.2** Rhesus monkey kidney cells $(MA-104)^9$ free of extraneous agents as tested by the Code of Federal Regulations, Title 9 (9 CFR)
- 2.2.3 Minimum essential medium (MEM)
 - **2.2.3.1** 9.61 g MEM¹⁰
 - **2.2.3.2** 2.2 g sodium bicarbonate (NaHCO₃)¹¹
 - **2.2.3.3** Q.S. to 1000 ml with deionized water (DW); adjust pH to 6.8-6.9 with 2N hydrochloric acid (HCl).¹²
 - 2.2.3.4 Sterilize through a 0.22-um filter. 13
 - 2.2.3.5 Aseptically add:
 - 1. 10 ml L-glutamine¹⁴
 - 2. $2.5 \mu g/ml$ amphotericin B¹⁵
 - 3. 100 units/ml penicillin¹⁶
 - 4. 50 µg/ml gentamicin sulfate¹⁷

 $^{^{\}rm 8}$ Reference quantities are available on request from the Center for Veterinary Biologics-Laboratory (CVB-L), P.O. Box 844, Ames, IA 50010 or equivalent

⁹ Available on request from the CVB-L or equivalent

¹⁰ MEM with Earle's salts without sodium bicarbonate, Cat. No. 410-1500EF, Life Technologies, Inc., 8400 Helgerman Ct., Gaithersburg, MD 20884 or equivalent ¹¹ Cat. No. S 5761, Sigma Chemical Co., P.O. Box 14508, St. Louis, MO 63178 or equivalent

 $^{^{12}}$ Cat. No. 9535-01, J.T. Baker, Inc., 222 Red School Ln., Phillipsburg, NJ 08865 or equivalent

¹³Cat. No. 12122, Gelman Sciences, 600 S. Wagner Rd., Ann Arbor, MI 48106 or equivalent

 $^{^{14}}$ L-glutamine-200 mM (100X), liquid, Cat. No. 320-503PE, Life Technologies, Inc. or equivalent

¹⁵Cat. No. A 2411, Sigma Chemical Co. or equivalent

 $^{^{16}}$ Cat. No. 0049-0530-28, Schering Laboratories, 2000-T Galloping Hill Rd., Kenilworth, NJ 07033 or equivalent.

¹⁷Cat. No. 0061-0464-04, Schering Laboratories or equivalent

- 5. 100 μg/ml streptomycin¹⁸
- **2.2.3.6** Store at $4^{\circ} \pm 2^{\circ}$ C.
- 2.2.4 Growth Medium
 - 2.2.4.1 930 ml of MEM
 - 2.2.4.2 Aseptically add 70 ml of heat-inactivated fetal bovine serum (FBS).
 - **2.2.4.3** Store at $4^{\circ} \pm 2^{\circ}C$.
- 2.2.5 Diluent Medium
 - 2.2.5.1 100 ml MEM
 - **2.2.5.2** 83.3 µl pancreatin¹⁹
 - **2.2.5.3** Store at $4^{\circ} \pm 2^{\circ}$ C.
- 2.2.6 Anti-PROTA monoclonal antibody (MAb) 9
 - **2.2.6.1** MAb against Serotype 4 (Gottfried strain)
 - 2.2.6.2 MAb against Serotype 5 (OSU strain)
- **2.2.7** Rabbit anti-mouse fluorescein isothiocyanate labeled conjugate²⁰ (Rabbit Anti-mouse Conjugate)
- 2.2.8 0.01 M Phosphate buffered saline (PBS)
 - **2.2.8.1** 1.19 g sodium phosphate, dibasic, anhydrous $(Na_2HPO_4)^{21}$
 - **2.2.8.2** 0.22 g sodium phosphate, monobasic, monohydrate (NaH₂PO₄ \bullet H₂O)²²
 - **2.2.8.3** 8.5 g sodium chloride (NaCl)²³

¹⁸Cat. No. S 9137, Sigma Chemical Co. or equivalent

¹⁹Pancreatin 4XNF (10X), Cat. No. 610-5720AG, Life Technologies, Inc. or equivalent

 $^{^{20}}$ Cat. No. 04-6111, Zymed Laboratories, Inc., 458 Carlton Ct., So. San Francisco, CA 94080 or equivalent

²¹Cat. No. S 0876, Sigma Chemical Co. or equivalent

 $^{^{22}}$ Cat. No. S 9638, Sigma Chemical Co. or equivalent

 $^{^{23}}$ Cat. No. S 9625, Sigma Chemical Co. or equivalent

- 2.2.8.4 Q.S. to 1000 ml with DW.
- **2.2.8.5** Adjust pH to 7.2-7.6 with 0.1 N sodium hydroxide (NaOH)²⁴ or 2.0 N HCl.
- **2.2.8.6** Sterilize by autoclaving at 15 psi, $121^{\circ} \pm 2^{\circ}$ C for 35 \pm 5 min.
- **2.2.8.7** Store at $4^{\circ} \pm 2^{\circ}$ C.
- **2.2.9** 80% Acetone
 - **2.2.9.1** 80 ml acetone²⁵
 - 2.2.9.2 20 ml DW
 - **2.2.9.3** Store at room temperature (RT) $(23^{\circ} \pm 2^{\circ}C)$.
- 2.2.10 Cell culture plates, 26 96 well
- **2.2.11** Polystyrene tubes, 27 12 x 75 mm

3. Preparation for the test

3.1 Personnel qualifications/training

Personnel must have training in the immunological basis of SN assays, cell culture techniques, the principles of IFA, and aseptic technique.

3.2 Preparation of equipment/instrumentation

- **3.2.1** On the day of test initiation, set a water bath at $56^{\circ} \pm 2^{\circ}\text{C}$.
- **3.2.2** On the day of test initiation, set a water bath at $36^{\circ} \pm 2^{\circ}C$.

 $^{^{24}}$ Cat. No. 925-30, Sigma Chemical Co. or equivalent

 $^{^{25}}$ Cat. No. A 6015, Sigma Chemical Co. or equivalent

 $^{^{26}}$ Costar $^{\circ}$ 3596, Costar Corp., 1 Alewife Center, Cambridge, MA 02140 or equivalent

 $^{^{27}}$ Falcon $^{\circ}$ 2058, Becton Dickinson Labware, 2 Bridgewater Ln., Lincoln Park, NJ 07035 or equivalent

3.3 Preparation of reagents/control procedures

- **3.3.1** MA-104 Plates. Two days prior to test initiation, seed 96-well cell culture plates with MA-104 cells, in Growth Medium, at a cell count that will produce a monolayer after 48 ± 8 hr of incubation at $36^{\circ} \pm 2^{\circ}$ C in a CO_2 incubator. These become the MA-104 Plates. Two sera can be tested on each MA-104 Plate. Growth Medium is changed if excess acidity of the medium is observed or cells are not confluent after incubation.
- 3.3.2 Stock Virus Preparation. On the day of test initiation, rapidly thaw vials of each PROTA Reference Virus in a $36^{\circ} \pm 2^{\circ}\text{C}$ water bath. Dilute each virus in Diluent Medium to contain 100-700 50% tissue culture infective dose (TCID₅₀)/200 µl.
- **3.3.3** Virus Back Titration. On the day of test initiation, make 4 serial tenfold dilutions of each Stock Virus.
 - **3.3.3.1** Place 900 μ l of MEM into 2 sets of 8, 12 x 75-mm polystyrene tubes, labeled 10⁻¹ to 10⁻⁴. Label each set with the appropriate stock virus.
 - **3.3.3.2** Transfer 100 μ l of each Stock Virus into the appropriate 10⁻¹ tubes; mix by vortexing. Discard pipette tip.
 - 3.3.3.3 Transfer 100 μl from the $10^{\text{--}1}$ tube to the $10^{\text{--}2}$ tube; mix by vortexing. Discard pipette tip.
 - 3.3.3.4 Repeat Section 3.3.3.3 for the remaining tubes, transferring 100 μ l sequentially from the previous dilution to the next dilution until the dilution sequence is completed. Discard 100 μ l from each 10⁻⁴ tube.
 - 3.3.3.5 Add 900 μl of Diluent Medium to each set of tubes. This becomes the Virus Back Titration-Diluent Medium Mixture.

- 3.3.4 Working Anti-PROTA MAb. On the day of MA-104 plate examination, if an IFA test is to be conducted, dilute the appropriate Anti-PROTA MAb in PBS, according to the CVB-L supplied Reference and Reagent Sheet or as determined for that specific MAb.
- **3.3.5** Working Rabbit Anti-mouse Conjugate. On the day of MA-104 plate examination, if an IFA test is to be conducted, dilute the Rabbit Anti-mouse Conjugate in PBS, according to the manufacturer's recommendations.

3.4 Preparation of the sample

- **3.4.1** On the day of test initiation, heat inactivate all Test Sera in a $56^{\circ} \pm 2^{\circ}$ C water bath for 30 ± 5 min.
- 3.4.2 Prepare serial twofold dilutions of Test Sera in 96-well cell culture plates, which become the Dilution Plates (see Appendix I). Place each Test Serum onto 2, 96-well cell culture plates, 1 for each PROTA serotype to be tested. Make twofold dilutions as follows:
 - **3.4.2.1** Add 150 μ l Diluent Medium to all wells in Rows B-H.
 - **3.4.2.2** Add 150 μ l of a Test Serum to Rows A and B. Change pipette tips. Mix Row B with a multichannel micropipettor (6-8 fills).
 - **3.4.2.3** Transfer 150 μ l from Row B to Row C. Change pipette tips. Mix Row C with a multichannel micropipettor (6-8 fills).
 - **3.4.2.4** Continue as in **Section 3.4.2.3** for the remaining rows. Discard 150 μl from all wells in Row H.
 - $\textbf{3.4.2.5} \quad \text{Add 150} \ \mu l \ \text{of Stock Virus to all wells}$ of the Dilution Plate. Tap plates gently to mix.

CVB/NVSL MVSAM0122.01
Testing Protocol Page 9 of 13

Supplemental Assay Method for the Titration of Porcine Rotavirus Antibody (Constant Virus-Varying Serum Method)

3.4.2.6 Incubate for 60 ± 10 min at $36^{\circ} \pm 2^{\circ}$ C to allow for neutralization of virus. This is an additional twofold dilution of the Test Sera. This becomes the Virus-Test Sera Mixture.

4. Performance of the test

- **4.1** On the day of test initiation, decant Growth Medium from the MA-104 Plates.
- **4.2** Add 200 μ l/well Diluent Medium to the MA-104 Plates. Decant the Diluent Medium.
- **4.3** Again, add 200 μ l/well Diluent Medium to the MA-104 Plates. Incubate for 60 ± 10 min at 36° ± 2°C. Decant the Diluent Medium.
- **4.4** Inoculate 200 μ l/well of each Virus-Test Sera Mixture into 5 wells/dilution of an MA-104 Plate, using a multichannel pipettor.
- **4.5** Inoculate 200 μ l/well of each dilution (10 $^{\circ}$ to 10 $^{-4}$) of Virus Back Titration-Diluent Medium mixture into 5 wells of an MA-104 Plate, using a multichannel pipettor.
- **4.6** Add 200 μ l/well of Diluent Medium to 2 columns on each MA-104 Plate, to serve as uninoculated cell controls.
- **4.7** Incubate the MA-104 Plates for 120 \pm 12 hr postinoculation (HPI) at 36 $^{\circ}$ \pm 2 $^{\circ}$ C.
- **4.8** CPE counting is the primary method of determining the log_{10} 50% tissue culture infective dose (TCID₅₀).
 - **4.8.1** 120 ± 12 HPI, examine the wells with an inverted light microscope. The CPE of PROTA is visible as cell death in the cell monolayer.
 - **4.8.2** Record the number of wells/dilution showing any characteristic CPE of PROTA for each Test Serum and Virus Back Titration.

- **4.8.3** Calculate the $TCID_{50}$ of each Virus Back Titration using the Spearman-Kärber method as commonly modified.
- **4.8.4** Calculate each endpoint of the Test Sera using the Spearman-Kärber method as commonly modified. The endpoints of the Test Sera are reported as SN titer which corresponds to the reciprocal of the highest serum dilution that neutralizes PROTA.

Example:

```
1:2 dilution of Test Sera = 5 of 5 wells CPE
1:4 dilution of Test Sera = 5 of 5 wells CPE
1:8 dilution of Test Sera = 3 of 5 wells CPE
1:16 dilution of Test Sera = 0 of 5 wells CPE
```

Titer = (X - d/2 + [d * S]) where:

```
X = Log_{10} of lowest dilution (=0.3)
d = Log_{10} of dilution factor (=0.3)
S = Sum of proportion of CPE - (13/5=2.6)
Titer = (0.3 - 0.3/2 + [0.3 * 13/5]) = 0.93
antilog of 0.93 = 8.5
```

Titer of the Test Serum is 1:9

- **4.9** Certain strains of PROTA may not exhibit pronounced CPE, thus an IFA may be conducted to determine the titer:
 - **4.9.1** Decant the Growth Media from the MA-104 Plates.
 - **4.9.2** Rinse the MA-104 Plates with PBS; incubate at RT for 5 ± 2 min. Decant the PBS.
 - 4.9.3 Fill wells with 80% Acetone.
 - **4.9.4** Incubate at RT for 15 ± 5 min.
 - **4.9.5** Decant the 80% Acetone from the MA-104 Plates and air dry at RT.
 - **4.9.6** Pipette 35 μ l of the Working Anti-PROTA MAb into all wells. Incubate for 45 \pm 15 min at RT.

- **4.9.7** Fill the wells completely with PBS; incubate at RT for 5 ± 2 min. Decant the PBS.
- 4.9.8 Repeat for a total of 2 washes.
- **4.9.9** Gently tap the MA-104 Plates onto paper towels to remove excess moisture.
- **4.9.10** Pipette 35 μ l of the Working Rabbit Anti-mouse Conjugate into all wells. Incubate for 40 \pm 10 min at RT.
- 4.9.11 Repeat Sections 4.9.7 through 4.9.9.
- **4.9.12** Dip the plate in DW; decant. Allow to air dry or dry at $36^{\circ} \pm 2^{\circ}C$.
- **4.9.13** Examine the MA-104 Plates with a UV-light microscope at 100 to 200 X magnification.
- **4.9.14** A well is considered positive if typical cytoplasmic, apple-green fluorescence is observed.
- **4.9.15** Record and calculate as in **Sections 4.8.2** through **4.8.4**

5. Interpretation of the test results

- **5.1** The test is invalid if CPE, fluorescence, or bacterial/fungal contamination is observed in any of the control wells.
- **5.2** For a valid assay, the Virus Back Titration must be between 50 and 350 $TCID_{50}/200 \mu l$.

6. Report of test results

Record all test results on the test record.

7. References

- 7.1 Code of Federal Regulations, Title 9, Part 113.200, U.S. Government Printing Office, Washington, DC, 2000.
- **7.2** Conrath TB. Handbook of Microtiter Procedures. In: Clinical and Research Applications Laboratory. Alexandria, VA: Cooke Engineering Co, 1972.
- 7.3 Finney DJ. Statistical Method in Biological Assay. 3rd ed. London: Charles Griffin and Co, 1978.
- **7.4** Rose NR, Friedman H, and Fahey JL, eds. Neutralization Assays. In: *Manual of Clinical Laboratory Immunology*. Washington, DC, ASM, 1986.
- **7.5** Parker RA, Pallansch MA. Using the virus challenge dose in the analysis of virus neutralization assays. Statistics in Medicine 11:1253-1262, 1992.

8. Summary of revisions

This document was rewritten to meet the current NVSL/CVB QA requirements, to clarify practices currently in use in the CVB-L, and to provide additional detail. No significant changes were made from the previous protocol.

CVB/NVSL MVSAM0122.01
Testing Protocol Page 13 of 13

Supplemental Assay Method for the Titration of Porcine Rotavirus Antibody (Constant Virus-Varying Serum Method)

9. Appendix

Transfer Plate

	1	2	3	4	5	6	7	8	9	10	11	12
A 1:2	TS1	TS1	TS1	TS1	TS1	CC	CC	TS2	TS2	TS2	TS2	TS2
B 1:4												
C 1:8												
D												
E												
F												
G												
H 1:256												

TS= Test Serum CC= Cell Control